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Abstract

One of the particularities of information encoded as DNA strands is
that a string w contains basically the same information as its Watson-
Crick complement, denoted here as 6(u). Thus, any expression consisting
of repetitions of u and A(u) can be considered in some sense periodic.
In this paper we give a generalization of Lyndon and Schiitzenberger’s
classical result about equations of the form u' = v™w™, to cases where
both sides involve repetitions of words as well as their complements. Our
main results show that, for such extended equations, if [ > 5,n,m > 3,
then all three words involved can be expressed in terms of a common
word t and its complement 6(¢). Moreover, if I > 5, then n =m = 3 is an
optimal bound. We also obtain a complete characterization of all possible
overlaps between two expressions that involve only some word u and its
complement 6(u).

1 Introduction

This paper is a theoretical study of pseudoperiodic words, notion motivated by
the properties of information encoded as DNA strands for DNA computing pur-
poses. Informally, a word is pseudoperiodic if it consists of repeated occurrences
of another word and/or the image of that word under an antimorphic involution.
The notion of antimorphic involution is the mathematical formalization of the
Watson-Crick complementarity of DNA single strands, as detailed below.
DNA, in its single-stranded form, is a linear chain made up of four different
types of units, called nucleotides, and can thus be viewed to a first approxima-
tion as a word over the four-letter alphabet {A,C,G,T}. A DNA single strand
has an orientation, with one end known as the 5’ end, and the other as the 3’
end, based on their chemical properties. By convention, a word over the DNA al-
phabet represents the corresponding DNA single strand in the 5’-3’ orientation.
Another crucial feature is the Watson-Crick (WK) complementarity: A is com-
plementary to 7', and G is to C'. Two complementary DNA single strands with
opposite orientation will bind to each other by bonds between their individual
bases to form a helical DNA double strand. The Watson-Crick complementarity



operation is a fundamental bio-operation in DNA Computing experiments [1].
In this paper we investigate the consequences of Watson-Crick complementarity
on the notion of periodicity of words.

Periodicity properties of words are among the main theoretical tools used in
pattern-matching algorithms, see e.g. [2] and [3]. Recall that a word w is called
periodic if there exists another word v, shorter than w, such that u is a prefix of
v* for some § > 2. Moreover, the way in which a word can be decomposed, and
whether two words are powers of a common word are two questions which have
been widely investigated in language theory, see, e.g., [4] and [5]. However, when
dealing with DNA strands, note that a string u encodes the same information as
its complement, 6(u), where 6 denotes the WK complementarity function or its
mathematical formalization as an antimorphic involution. In this context, e.g.,
the word 4™6(u)™ can be considered periodic, since it consists of repetitions of
the same information unit. (Other generalizations of the notion of periodicity
include, e.g., the “weak periodicity” of [6] whereby a word is called weakly
periodic if it consists of repetitions of words with the same Parikh vector. This
type of period was called abelian period in [7].) In [8] the Fine and Wilf Theorem
— one of the fundamental periodicity results on words, see e.g. [4] and [5] — was
extended to deal with expressions involving both a word and its image under
an antimorphic involution.

Here we extend another central periodicity result, due to Lyndon and Schii-
tzenberger, [9]. (See also [10] and Chapter 5 from [5] for some shorter proofs
and [11] and [12] for some other generalizations.) The original result states that,
if the concatenation of two periodic words v™ and w™ can be expressed in terms
of a third period u, i.e., u! = v™w™, for some n,m,l > 2, then all three words
u,v, and w can be expressed in terms of a common word ¢, i.e., u,v,w € {t}*.

In our generalization, we consider repetitions involving both a word and
its image under 0, i.e., the equation a(u,8(u)) = B(v,0(v)) - v(w,8(w)) where
a(u,0(u)) € {u, 0}, B(v,0(v)) € {v,0(v)}", and Y(w,0(w)) € {w,0w)}™
with I,n,m > 2. A conclusion of our main results is that, whenever [ > 5,
n,m > 3 we have u,v,w € {t,0(t)}* for some word ¢, i.e., all three words can
be expressed using a common word ¢ and its image 6(t). Moreover, we provide
examples showing that, for any [ > 5, n = m = 3 is an optimal bound. In the
case when [ = 3 or | = 4, the problem of finding optimal bounds remains open.
Our proofs are not generalizations of the methods used in the classical case,
since one of the main properties used therein, i.e., the fact that the conjugate
of a primitive word is still primitive, cannot be used here.

In our search for these bounds, we also obtain a characterization of all possi-
ble overlaps of two expressions a(v,0(v)), B(v,0(v)) € {v,6(v)}T. In particular,
we show that, contrary to the classical case (when the two expressions involve
only a word v, but not its image under 6), the equality a(v,8(v))-z = y-B(v, 0(v))
with z and y shorter than v, does not always force a decomposition of v of the
form v € {t,0(¢)}* for some word ¢.

The paper is organized as follows. In Section 2, we fix our terminology
and recall some known results. In Section 3, we provide the characteriza-
tion of all possible overlaps of the form a(v,0(v)) -z = y - B(v,8(v)) with



a(v,8(v)),B(v,8(v)) € {v,0(v)}" and z,y shorter than v. Finally, in Section 4
we provide our extension of Lyndon and Schiitzenberger’s result.

2 Preliminaries

Let X be a finite alphabet. We denote by X* the set of all finite words over
¥, by € the empty word, and by Xt the set of all nonempty finite words. The
catenation of two words u,v € ¥* is denoted by either uv or u-v. The length of
a word w € ¥*, denoted by |w|, is the number of letters occurring in it. We say
that u is a factor (a prefir, a suffiz, resp.) of v, if v = tyute (v = ute, v = tyu,
resp.) for some t1,t2 € *. We denote by Pref(v) (resp. Suff(v)) the set of all
prefixes (resp. suffixes) of the word v. We say that two words u and v overlap if
ux = yv for some z,y € T* with |z| < |v]. An integer p > 1is a period of a word
W=4aj...an, witha; € Xforall1 <i<n,ifa;=a;pforalll <i<n—p.

A word w € ¥V is called primitive if it cannot be written as a power of
another word; that is, if w = 4™ then n = 1 and w = u. For a word w € X, the
shortest u € Xt such that w = u™ for some n > 1 is called the primitive root of
the word w and is denoted by p(w). The following is a well-known property of
primitive words, see, e.g., [4], [5].

Proposition 1. Let u € £t be a primitive word. If u? = zuy, then either x = ¢
ory =Ee.

A mapping 6 : ¥* — ¥* is called an antimorphism if for any words u,v € ¥*,
O(uv) = 6(v)f(u). Moreover, a mapping 6 : ¥* — X* is called an involution if,
for all words u € £*, #(6(u)) = u. An antimorphic involution is a mathematical
formalization of the WK complementarity of DNA single strands. Throughout
this paper we will assume that 6 is an antimorphic involution on a given alphabet
Y. A word w € ¥* is called 8-palindrome, or pseudopalindrome if 6 is not
specified, if w = §(w) (see [13] and [14]).

The notions of periodic and primitive words were extended in [8] in the
following way. A word w € ¥+ is #-periodic if w = wy ... wy, for some k > 2 and
words t,ws,...,wr € X1 such that w; € {t,0(t)} for all 1 < i < k. Following
[14], in less precise terms, a word which is §-periodic with respect to a given
but unspecified involutory morphism 6 will be also called pseudoperiodic. The
word t in the definition of a §-periodic word w is called a 8-period of w. We call
a word w € ¥t O-primitive if it is not @-periodic. The set of §-primitive words
is strictly included in the set of primitive ones, see [8]; for instance, if we take
a # b and (a) = b, 8(b) = a, then the word ab is primitive, but not #-primitive.
We define the 8-primitive root of w, denoted by pg(w), as the shortest word ¢
such that w = wy ... wy, for some k > 1, w; € {t,0(¢)} for all 1 <4 < k, and
wy = t. Note that if w is §-primitive, then pyp(w) = w.

We say that two words u and v commute if uv = vu. We can characterize
the commutation of two words in terms of primitive roots, see, e.g., [4], [5].



Theorem 2. For u,v € ¥*, the following conditions are equivalent: i) u and
v commute; 1) u and v satisfy a nontrivial relation, i.e., a nontrivial equation
over two variables without constants; #i) u and v have the same primitive root.

Two words v and v are said to be conjugate if there exist words x and y
such that v = zy and v = yz. In other words, v can be obtained via a cyclic
permutation of u. The next known result, see, e.g., [4], [5], characterizes the
conjugacy of two words.

Theorem 3. Let u,v € XT. Then, the following conditions are equivalent: i)
u and v are conjugate; ii) there erists a word z such that uz = zv; moreover,
this holds if and only if u = pq, v = qp, and z = (pq)‘p, for some p,q € ¥* and
i > 0; i) the primitive roots of u and v are conjugate.

The following periodicity result is due to Lyndon and Schiitzenberger, [9].

Theorem 4. If words u,v,w satisfy the relation u' = v™w™ for some positive

integers l,n,m > 2, then they are all powers of a common word, i.e., there exists
a word t such that u,v,w € {t}*.

The Fine and Wilf theorem, in its form for words, see [4], [5], illustrates
another fundamental periodicity property. It states that if two words u,v € ¥*,
with n = |u|, m = |v|, d = gcd(n,m), are such that if two powers u’ and v’
have a common prefix of length at least n +m —d, then u and v are powers of a
common word, where gcd(n,m) denotes, as usual, the greatest common divisor
of n and m. Moreover, the bound n + m — d is optimal. The original result of
Fine and Wilf, [15], was formulated for sequences of real numbers.

This theorem was extended in [8] for the case when instead of dealing with
powers of two words u' and v/, we look at expressions over {u,f(u)} and
{v,0(v)}, respectively. Its weaker version, which will be very useful, is pre-
sented as well.

Theorem 5 ([8]). Let u,v € Lt be two distinct words with |u| > |v|. If
there ezist two expressions a(u,8(u)) € u{u,8(uw)}* and B(v,8(v)) € v{v,8(v)}*
having a common prefiz of length at least 2|u| + |v| — ged(|ul, [v]), then po(u) =
po(v). Moreover, the bound 2|u| + |v| — ged(|ul, |v]) is optimal.

Theorem 6 ([8]). Let u,v € T, a(u,0(u)) € u{u,0(u)}*, and B(v,0(v)) €
v{v,0(v)}* such that a(u,0(u)) = B(v,0(v)). Then pe(u) = pa(v).

The next two results, also from [8], will be very useful in our considerations.

Lemma 7 ([8]). Foru,v € ¥*, if uv = 8(uwv) and vu = 0(vu), then there ezists
a word t € X1 such that u,v € {t,0(t)}*.

Lemma 8 ([8]). Let v € X be a 0-primitive word. Then, 8(v)vz = yvb(v) for
some words z,y € ¥* with |z|,|y| < |v|, if and only if v =0(v) and z =y =e.
Similarly, v8(v)v = zv%y for some z,y € X* if and only if v = 6(v) and either
T=€ory=e.



The following result will prove very useful in our future considerations.

Lemma 9. Let u € Xt such that v = zz = zy for some x,y,z € Nt with
x =0(z) and y = 0(y). Then z,y,z,u € {t,0(t)}* for somet € T+.

Proof. The equation u = £z = zy implies that £ = pq, y = qp, and z = (pq)’p
for some p,q € ¥* and j > 0. Since z = 8(x) and y = 0(y), we have pg = 6(pq)
and gp = 6(gp). Then, Lemma, 7 implies that there exists a word ¢ € ¥T such
that p,q € {t,0(t)}*. O

3 Overlaps between #-primitive Words

It is well known that a primitive word v cannot occur nontrivially inside v2, see
Proposition 1. Thus, two expressions v* and v, with 4,j > 1, cannot overlap
nontrivially on a sequence longer than |v|. A natural question is whether we can
have some nontrivial overlaps between two expressions a(v,60(v)), 8(v,8(v)) €
{v,0(v)}*, when v € It is a f-primitive word. In this section we completely
characterize all such nontrivial overlaps, and, moreover, in each case we also
give the set of all solutions of the corresponding equation.
We begin our analysis by giving two intermediate results.

Theorem 10. Let v € Xt be a 9-primitive word and a(v,8(v)), B(v,0(v)) €
{v,0(v)}* such that a(v,0(v)) -z =y - B(v,0(v)), with z,y € ¥, |z|,|y| < |v|.
Then, v2 and 6(v)? cannot occur simultaneously neither in a(v,0(v)) nor in

B(v,0(v)).

Proof. Suppose that both v? and 8(v)? occur in a(v,8(v)); the case when they
both occur in (v, 8(v)) is symmetric. Moreover, since 6 is an involution, we can
suppose without loss of generality that v? occurs before 6(v)?, thus implying
that v26(v) is a factor in a(v,6(v)). Since v (resp. 8(v)) is primitive, the border
between any two consecutive v’s (resp. 6(v)’s) falls inside a §(v) (resp. v), see
Figure 1.

v v 6(v)

v? or v8(v) or §(v)v

Figure 1: The case when v26(v) is a factor in a(v,8(v))

Thus, v26(v) overlaps either with 6(v)v? or with (v)vf(v) or with 8(v)2v.
In all three cases the nontrivial overlap between vf(v) and 8(v)v contradicts the
O-primitivity of v, see Lemma 8. O

Theorem 11. Let v € I+ be a -primitive word and a(v,8(v)),B(v,0(v)) €
{v,0(0)}* such that a(v,0()) -z = y - B(v,0(v)) for some z,y € Lt with



|z|,|y| < |v|. Then, neither v8(v)v nor 8(v)vd(v) can occur either in a(v,0(v))

or in B(v,0(v)).

Proof. Suppose that v8(v)v occurs in a(v,0(v)). Since we assumed z,y € I+
and |z|,|y| < |v|, vO(v)v contains as a proper factor an expression of length
2Jv|, (v, 0(v)) € {v,0(v)}?, i.e., there exist some p,q € TT such that vf(v)v =
py(v,0(v))q. We already know, due to Lemma 8, that neither v8(v) nor 6(v)v
can be factors of vf(v)v. Thus, we have that either v? or §(v)? is a factor in
vf(v)v. However, by Lemma 8, the first case is not possible. On the other hand,
the second case contradicts the primitivity of 6(v), since 8(v) would occur as a
factor of §(v)2. Thus, v8(v)v cannot occur in a(v,é(v)). All the other cases can
be proved similarly. O

As an immediate consequence of the previous two theorems, for a given 6-
primitive word v, if a(v,0(v)) -z = y - B(v,0(v)) with z,y € TV, |z|, |y| < |v],
then a(v,8(v)) and B(v,8(v)) can be only of the following types v¢, v*8(v),
()%, B(v)E, O(v)iv, or §(v)vt for some i > 1. The next result refines this
characterization further.

Table 1: Characterization of possible proper overlaps of the form a(v,8(v))-z =

y-Bv,0(v))

Equation Solution

viz = yb(v)',i > 1 v=yp,x=0(y),p=0(p),
and whenever i > 2,y = 6(y)

vz =yf(v)Tv,i>1 | v=(pg)’'p,z = gp,y = py,
and whenever 1 > 2,p = 6(p), pg = 0(q)p

vl (v)r = yvd(v), v =(pg)"'p,xz = 0(pg),y = pg, with j > 0,qp = 0(qp);

VW) 'z =yt i >1 | v=r(tr)"(rt)" "r,y = (rt)"r(rt)™, . = (rt)™ "r,
where r = 6(r),t =6(t),n >0,m > 1

()l = yv'f(v),i > 2 | v = (rt)"r(rt)™ ",y = (rt)"r(rt)™, z = (tr)™r(tr)",
where r = 0(r),t =0(t),n >0,m >1

Theorem 12. Letv € 7T be a §-primitive word. Then, the only possible proper
overlaps of the form a(v,8(v)) -z =y - B(v,8(v)) with a(v,8(v)),S(v,0(v)) €
{v,0()}*, z,y € =T and |z|, |y| < |v| are given in Table 1 (modulo a substitu-
tion of v by 6(v)) together with the characterization of their sets of solutions.

Proof. Since 6 is an involution, we can assume without loss of generality that
a(v,0(v)) starts with v. Then, due to the previous observation we know that
a(v,0(v)) € {vi, v8(v),v8(v)* | i > 1}.

Case 1: Suppose first that a(v,0(v)) = v* for some i > 1. Since v is -primitive,
viz = yB(v,0(v)), and |y|, |z| < |v|, the border between any two consecutive v’s
falls inside a 6(v), see Figure 2; otherwise v would occur inside v* which would



Figure 2: The case when a(v,8(v)) = v

contradict its primitivity. Thus, B(v,0(v)) € {6(v)!,0(v)i~1v}. Then, we can
write v = yv; and 6(v) = 6(v1)0(y).

Suppose first that 3(v,0(v)) = 8(v)’. Then, we immediately obtain v; =
O(v1) and, if i« > 2 also y = 6(y). Moreover, if we look at the end of the two
sides of the equation v*z = y#(v)?, we also obtain that = #(y). Thus, a proper
overlap of the form viz = yf(v)* with v f-primitive is possible, and, moreover,
the set of all solutions of this equation is characterized by the following formulas:
v =yuv; and x = 0(y), where v; = 0(v1) and y = 6(y) whenever i > 2.

Suppose now that S(v,8(v)) = 8(v)*~1v. If we look at the end of the two
sides of the equation, then we obtain v = v12. Thus, v = yv; = viz, implying
that there exist some p,q € ¥* and j > 0 such that y = pq, z = qp, v1 = (pq)’p,
and v = (pg)’*p. If ¢ = ¢, then v = p/*? which contradicts the primitivity
of v. If p = ¢, then v = ¢/t which either contradicts the primitivity of v or,
when j = 0, implies that v = y contradicting our assumption that |y| < |v].
Thus, we can suppose p,q € XT. Now, if 4 > 2, then v; = 0(v1) and y = 0(y),
ie., pg = 6(pg), p = 6(p). If j > 1, then also ¢ = 6(g), which contradicts
the primitivity of v. Thus, if i > 2, then we must have j = 0. To conclude,
a proper overlap of the form viz = yf(v)~'v with v f-primitive is possible,
and, moreover the set of all solutions of this equation is characterized by the
following formulas: v = (pg)’*'p, y = pq, and = = gp; moreover, if i > 2 then
p = 0(p) and pg = 0(q)p- _

Case 2: Suppose now that a(v,8(v)) = v'8(v), for some ¢ > 1. If i > 2,
then B(v,6(v)) has to start with 6(v)¢~!, since otherwise it would contradict
the primitivity of v. If this §(v)*~! is followed by v, see Figure 3, then vf(v)
overlaps with #(v)v with the overlap properly longer than v. Then Lemma 8

Figure 3: The case when a(v,8(v)) = v'0(v)

leads to a contradiction. Hence, 3(v,8(v)) starts with 6(v)¢, see Figure 4. But
then, B(v,6(v)) can end neither with v due to Lemma 8, nor with 8(v) due to
Proposition 1. Thus we must have ¢ = 1. Then Proposition 1 and Lemma, 8



Figure 4: The case when a(v,8(v)) = v*8(v)

imply that B(v,0(v)) starts with v. If B(v,0(v)) = v?, see Figure 5 a), then
we can write v = yv; = vyvs, implying that y = pg, vo = qp, vi = (pq)p,
and v = (pg)’*'p for some j > 0 and p,q € £*; moreover, just as before we
can suppose again p,q € L+, Also, we immediately obtain z = vy = 6(vs) and

v 6(v) z v 6(v) z
! Y | U1 10(’1)2) | 0(’01) | ‘ ! Yy | U1 16(1)2) | 0(’01) | ‘
\ I . T L v 0 v B(u) () |
Y v a) v ] v b) 0(v)

Figure 5: The equations: a) vf(v)x = yv? and b) v8(v)z = yvh(v)

vy = 0(vy). If j > 1, then we have p = 6(p), ¢ = 6(q), and since gp = 6(qp),
this implies that p(p) = p(g), contradicting the primitivity of v. If j = 0,
then we have p = 6(p) and gp = pb(q), which implies that p = r(¢r)™ and
g = (rt)™, for some n > 0, m > 1, r = 6(r), and ¢t = 6(¢), see [16]. Thus,
a proper overlap of the form vf(v)z = yv? with v §-primitive is possible, and,
moreover, the set of all solutions of this equation is characterized by the following
formula: v = (rt)"r(rt)™*t"r, x = (rt)™*"r, and y = (rt)"r(rt)™. The last
case to consider is when 8(v,0(v)) = v0(v), see Figure 5 b). Then, we can write
v = yv; = v1v2 and we obtain immediately z = 6(y) and vs = 6(v2). Thus,
a proper overlap of the form vf(v)x = yvf(v), with v §-primitive, is possible,
and moreover the set of all solutions of this equation is characterized by the
following formulas: v = (pq)’*'p, y = pq, z = 8(pq), and qp = 6(gqp).

Case 3: Suppose now that a(v,8(v)) = vf(v)?, for some i > 2; the case when
i = 1 was already considered before. Since 8(v) is primitive, the border between
any two 6(v)’s falls inside v. If 8(v,0(v)) starts with 6(v), then this 8(v) could
not be followed by either v due to Lemma 8 or 6(v) due to Proposition 1.
Therefore B(v,8(v)) has to begin with v, and moreover 3(v,8(v)) € vi{v,0(v)},
see Figure 6. As vf(v)z = yv? in Case 2, we can write v = yv; = vjvs with
y = (rt)"r(rt)™, v1 = (rt)"r, and vo = (rt)™*"r. Thus, proper overlaps of
the forms both v8(v)iz = yv*t! and vh(v)iz = yvid(v), with v f-primitive, are
possible. For the former equation, z = v = (rt)™*"r, while for the latter,
x = O(y) = (tr)™r(tr)". Note that the set of all solutions of vf(v)z = yv?
and that of v8(v)iz = yvt! are characterized by the exactly same formulas. In
contrast, the set of all solutions of vf(v)z = yvf(v) and that of vO(v)iz = yvid(v)



Figure 6: The case when a(v,8(v)) = v8(v)? and B(v,8(v)) starts with v
are formulated in different ways. O

4 An Extension of Lyndon and Schiitzenberger’s
Result

For u,v,w € ¥7T, let us consider some expressions a(u,0(u)) € {u,0(u)}t,
B(v,0(v)) € {v,0(v)}T, and y(w,f(w)) € {w,f(w)}T satisfying the equation
a(u,8(u)) = Bv,0(v)) - v(w,0(w)). Assume that for some positive integers
ln,m >0, [e(u, 8(u))| = Ix|ul, |B(v,6(v))| = nx|v], and |y(w, B(w))| = mx|w].
We say that the triple (I,n,m) imposes 0-periodicity on u,v,w, (or shortly,
imposes 0-periodicity), if the equation a(u, 8(u)) = B(v,8(v))-v(w,8(w)) admits
only solutions of the form u,v,w € {t,0(t)}* for some word ¢t € £*. Note that,
if (I,n,m) imposes #-periodicity, then so does (I,m,n), and vice versa.

In the classical case of the equation 4! = v™w™, Lyndon and Schiitzenberger’s
result (Theorem 4) states that any triple (I,n,m) with [,n,m > 2 imposes classi-
cal periodicity on u, v, w, with the same period. In this section we extend this re-
sult by considering the more general equation a(u,8(u)) = B(v,8(v))-y(w, O(w)).
Note that the fact that a certain triple (I,n,m) imposes §-periodicity does not
imply that (I',n',m') imposes #-periodicity for I' > [ or n' > n or m' > m.

The results of this section are summarized in Table 2. Overall, combining
all the results from this section we obtain that I > 5, n > 3, m > 3 imposes
O-periodicity on u, v, and w. In contrast, for | > 3, once either n = 2 or m = 2,
(I,n,m) does not always impose #-periodicity, see Examples 1 and 2. Therefore,
when [ > 5, (1,3,3) is the optimal bound. In the case when [ = 2, | = 3, or
I = 4, the problem of finding optimal bounds is still open.

l n m | @-periodicity
>6 >3 >3 YES Theorem 13
5 >5 >5 YES Theorem 14
5 4 >4 YES Theorem 21
5 3 >3 YES Theorem 22
(>3 2 >1] NO | Examples 1 and 2 |

Table 2: Result summary for the extended Lyndon-Schiitzenberger equation.



Example 1. Let ¥ = {a,b} and § : T* — X* be the mirror image defined
as 0(a) = a, 8(b) = b, and 8(w; ... w,) = w, ... w1, where w; € {a,b} for
all 1 <i < n. Take now u = afb?a®*, v = O(u)'a®v? = (a®*b%a*)'a®*V?, and
w = a2, for some k,1 > 1. Then, although 0(u)t1u!*! = 2wk, there is no word
t € XF with u,v,w € {t,0(t)}", i.e., for any k,1 > 1, the triple of numerical
parameters (21 + 2,2, k) is not enough to impose -periodicity.

Example 2. Consider again ¥ = {a,b} and 6 : £* — X* be the mirror image
defined in the previous example and take u = b*(aba)*, v = ulb = (b%(aba)*)'d,
and w = aba for some k,l > 1. Then, although u?*1 = vf(v)w*, there is no
word t € X1 with u,v,w € {t,0(t)}F, i.e., for any k,1 > 1, (2l + 1,2, k) is not
enough to impose 0-periodicity.

The next two results analyze the cases when we have triples (I,n,m) with
1> 6 and n,m > 3 and respectively (5,n,m) with n,m > 5.

Theorem 13. Let u,v,w € ¥7, n,m >3, 1> 6, u; € {u,0(u)} for 1 <i <,
v; € {v,0(v)} for 1 < j <n, and wi € {w,0(w)} for l<k<m. Ifur...u; =
V1 ...Vp W1 ... W, then there exists a wordt € X% such that u,v,w € {t,0(t)}*.

Proof. Let us suppose that |v; ...v,| > |w1 ... wnl|; the other case is symmetric
and can be solved similarly. Then, |v; ...vn| > L|uy ... > 3|ul, since I > 6.
Since n > 3, this means that u;...u; and v;...v, share a common prefix
of length larger than both 3Ju| and 3|v|. Thus, we can apply Theorem 5, to
obtain that u,v € {t,0(t)}* for some §-primitive word ¢t € £+. Moreover, since
Up...U = U1...Up W1...Wy, this implies w; ... w, € {t,0(t)}*. Since t is
f-primitive, Theorem 6 implies that also w € {t,60(¢)}*. O

Theorem 14. Let u,v,w € £+, n,m > 5, u; € {u,0(u)} for 1 <i <5, v; €
{v,0(v)} for 1 < j < n, and w, € {w,0(w)} for 1 <k <m. If ugusugusus =
V1 ...Up W1 ... W, then there exists a wordt € ¥F such that u,v,w € {t,6(¢)}*.

Proof. Since ujusuzusus = vy ...V, W1 ---Wy and n,m > 5, we immediately
obtain that |u| > |v| and |u| > |w|. Assume now that n|v| > m|w|; the other
case is symmetric. Thus, n|v| > 2|u|+ 1 |u| and we take n|v| = 2|u| + for some
1> 5lul.

We claim now that [ > |v|. If I > |u|, then we are done since we already
know that |u| > |v|. So, let |u| <1< |u|. If n > 6, then n|v| = 2|u| + I < 3|u]
and thus |v| < 1|u| < 1. Thus, the only case remaining now is when n = 5.
Then, 5|v| = 2|u| + 1 > 2|u| + %|u|, which implies [v| > %|u|. But then we have
that 4|v| > 2|u| while 5|v| = 2|u| + I. Hence, also in this case we obtain |v| <.

Thus, uwjusususus and vy ...v, have a common prefix of length nlv| =
2|ul +1 > 2|u| + |v|. This means, due to Theorem 5, that there exists a 6-
primitive word t € T such that u,v € {t,0(t)}. But then, since ujusususus =
V1...Up W1 ... W, we immediately obtain that also w € {t,6(¢)}. O

The triple (5,n,m) also turns out to impose #-periodicity for any n > 4 and
m>T.

10



Theorem 15. Let u,v,w € Xt, n >4, m > 7, u; € {u,0(u)} for 1 <i <
5, v; € {v,0(v)} for 1 < j < n, and wr € {w,0(w)} for 1 < k < m. If
UL UU3UgU5 = V] ...Vp W1 ...Wn, then there exists a word t € ¥t such that
w,v,w € {t,0(t)}T.

Proof. Unless the border between v,, and w; falls inside ug, Theorem 5 concludes
the existence of such ¢. So, assume that the border falls inside u3. If the border
between us and ug falls inside some v; except v,, then, due to Theorem 5, we
obtain u,v,w € {t,0(t)}* for some t € ¥T. Otherwise, we have that (n—1)|v| <
2|u|, which means |[v] < -2;|u| < 2|u|. Similarly, if the border between us
and w4 does not fall inside w;, we reach the existence of such ¢; otherwise
lw| < =%5|u| < %|u|. Under the condition that v, and w; straddle these
respective borders, the equation cannot hold because v and w are too short. O

We already know from Example 2 that for any m > 1, the triple (5,2,m)
is not enough to impose @-periodicity. So, we investigate next what would be
the optimal bound for the extension of the Lyndon and Schiitzenberger result
when the first parameter is 5. Note that, without loss of generality, we can
assume n < m. Then, due to Theorem 14, all we have to investigate are the
cases (5,3, m) for m > 3 and (5,4, m) for m > 4. The next intermediate lemma
will be useful in the analysis of these cases.

Lemma 16. Let u € X1 such that u = xy and y € Pref(u) for some 6-
palindrome words z,y € ¥F. If |y| > |z|, then p(z) = p(y) = p(u).

Proof. We have u = zy = yz for some z € X1 of the same length as . The
length condition implies that x € Pref(y). Since z = 0(x) and y = 6(y), this
means that z € Suff(y) and hence z = z. So we have u = zy = yz, and hence
z, y, and u share their primitive root. O

Unlike in the case of the original Lyndon-Schiitzenberger equation, the in-
vestigation of our extension entails the consideration of an enormous amount of
cases since for each variable u;, v;j, w, we have two possible values. However,
in almost all cases, it is enough to consider the common prefix between uy ... u;
and v1 ...v, or the common suffix between u; ...u; and w; ...w,, to prove that
either the equation imposes -periodicity or the equation cannot hold.

Note that for the (5,3, m) or (5,4, m) extensions of the Lyndon-Schiitzenber-
ger equation, we only have to consider the case when the border between v,
and w; is inside ug because otherwise Theorem 5 imposes §-periodicity. Also
even if the border is inside wus, if m|w| > 2|u| + |w|, then we reach the same
conclusion. Moreover, we can assume that w is §-primitive since otherwise we
would just increase the value of the parameter m. These observations justify
the assumptions which will be made in the following propositions.

Proposition 17. Let u,v € X1 such that v is a §-primitive word, uy,us,us €

{u,0(u)}, and v1,- -+ ,vamy1 € {v,0(v)} for some m > 1. If vy ---vamy1 1S
a proper prefiz of urusus and 2mlv| < 2lu| < (2m + 1)|v|, then us # u1 and
V1 = -+ = Vymy1. Moreover, vi = yp and uius = (yp)*™y for some y,p € T*

such that y = 0(y) and p = 6(p).
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Proof. Since 6 is an involution, we may assume without loss of generality that
u; = uw and v; = v. Note that |v| < |u| and, due to the length condition, the
border between u; and us falls inside vy, 11 while the one between uy and ug falls
inside vam41. Now, we have two cases depending on whether u, is equal to u;.

Case 1: Suppose first that us # ui, i.e., uy = 0(u). Since ujus = ub(u)
is #-palindrome, vy - - - vo,, € Pref(uiuz) implies 8(var,) -+ - 0(v1) € Suff (uqus).
Applying Theorem 12 to the overlap between vy ---va,, and 6(vay,)---0(v1)
gives the following subcases: a) v1 = -+ = va,, = v, and b) vy = v,v9 = --- =
vam = 6(v). For case b), because of the #-primitivity of v, applying Theorem
12 to the overlap between v, v2m+1 and 8(v2)0(vy) implies that vam41 can be
neither v nor #(v). Thus, this subcase is not possible.

Next, we consider the subcase a), and prove that ve,,41 must be v. Let
us suppose otherwise, i.e., va,,+1 = 8(v), and we analyze two cases depending
on whether ug is u or 8(u). If us = u, then vomvams1 = v8(v) overlaps with
O(v1)vy = O(v)v because vy € Pref(u), which contradicts Theorem 12. Other-
wise, i.e., uz = 6(u), we look at the overlap between v,,11 = v and 8(vmt1) =
0(v). Note that this overlap is §-palindrome and, moreover, since the border be-
tween u; and us cuts this overlap exactly in half, see Figure 7, we can say it is of
the form 26(z) for some z € £*. Then v = 26(z)y for some -palindrome word
y. Note that, due to length constraints, 26(z) € Pref(vam1) and 0(v) = y26(z).
If |20(2)| > |y|, then Lemma 16 implies that p(26(z)) = p(y), which contradicts
the #-primitivity of v. Otherwise, since |20(2)| < |y| we have z € Pref(y), and
hence 6(z) € Suff(y). So, if we look at the border between us and wus, then
y20(2)? = 260(z)*y. Thus p(y) = p(26(z)?), and hence y, z € {t,0(t)}T for some
t € X1, again a contradiction with the #-primitivity of v.

u 6(u) 0(u)
— 4 :
v Um+41 =V Vam+1 = 0(v)
—————f- - - - - T
1 20(2) oy Yo #(@0()
777777777777777 L 1 | )y
O(Vmy1) = 6(v) 6(v) 6(v)

Figure 7: v,,11 overlaps with 6(v,,+1) and the overlap is split exactly in half by
the border between u; and us.

In conclusion, if u; # uz, then we must have v; = --- = vam41. Using The-
orem 12, we can get the expressions of v and u8(u) based on two -palindromes
y and p.

Case 2: Let us suppose next that us = u; = u. Now, if we look at the
overlap between vy -+ - v, and V41 -+ - V2, then we see that all five cases from
Theorem 12 are possible.

Firstly we consider the subcase a) when v; = -+ = v, = v and vy =

- = U9y = O(v), which is illustrated in Figure 8. As mentioned before, the
border between u; and us falls inside v,,11, and hence in this case u; = v™z
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for some z € Pref(vm41); moreover |z| < 3|v| since 2|u| < (2m + 1)|v|. Then,
we can write v,11 = 8(v) = zy for some y € XT with y = 0(y), see Figure 8.
Moreover, using length arguments, we have that the right end of u, falls inside
Vam+1 after exactly 2|z| characters. Since u = v™z and §(z) € Suff(v), we obtain
6(z)z € Pref(vam1). Also, since 6(v) = zy and |z| < §|v|, we have |y| > |z|.

u Y | ug
3 Z 3 0(’1}) UQmj_l
st A
b0) Y 6z
T — T
v =V Um =V Um+i

Figure 8: wy...vm and vp,41 ...v2, overlap. Note that unless ug = u, we
cannot assume that v,,41 overlaps with va, 1.

If uz = u, then v,,vm11 = v8(v) and Vo, Vam+1 = 0(V)vame1 overlap. So,
due to Theorem 12, va,,+1 must be 6(v). So z = 6(z), and hence 6(v) = zy and
y € Pref(vmy1), i-e., y € Pref(8(v)). Then, since |y| > |z|, Lemma 16 implies
p(y) = p(z), which contradicts the 8-primitivity of v.

If us = 6(u), then we consider two cases depending on the value of vo,,41-
First, suppose that vo,11 = v. Since 0(z)z € Suff(u), we have 6(z)z € Pref(us3)
and we have two cases depending on |v| and 2|0(2)z| = 4|z|. If |[v] < 4|2|,
then vami1 = v = 60(2)zz for some z € Pref(8(z)z). Since |y| = |z| + ||
and y,0(z)z € Pref(v), we have z € Pref(y) and z € Suff(y), which means
y = zz. Thus, we have v = 6(z)zz = z20(z). But we already know from [8]
that this equation implies z,2 € {t,0(¢t)}* for some ¢t € ¥, which contradicts
the f-primitivity of v. Otherwise, i.e., 4|z| < |v|, since ugus is #-palindrome,
VamU2m+1 and 8(vamy1)0(vary,) overlap with the overlap of length at least |v|.
Since |v| > 4|z|, we can let v = (0(2)2)?v, for some v, € Pref(v) N Suff(v), see

u u ‘ 0 (u)
T z T T
Um+1 = 9(11) Vom = (’U) Vam+41 =V
H_Q{ ,,,,,,,,,,,, t } —
1 (0(z)2)* %, J
O(vami1) = 0(v) O(vm) =v
oo i

v = U = U

Figure 9: vamvamy1 = 0(v)v overlaps with its image under 6. In addition,
Um+1 = 6(v) overlaps with v; = v.

Figure 9. Then when we look at the overlap between v,, 1 = 6(v) and vy = v,

we can say that 6(v) = (26(z2))260(v,). Hence v = v,(260(2))? = (6(2)z)?v,. Since
(26(2))? and (0(2)2)? are §-palindromes, Lemma 9 leads to a contradiction with
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the -primitivity of v.

Next, suppose vam41 = 6(v). Then z = 6(z). If 2|z| < |v| < 4|2|, then
Vamt1 = O(v) = zFz,, where k € {2,3} and 2, € Pref(z). This means that
2% € Suff(u) since 22 € Suff(v,,). It follows that v, = §(v) has z as its suffix,
which leads to a contradiction with the §-primitivity of v since 8(v) = 2¥z,.
Otherwise, i.e., when 4|z| < |v], we can let vo,41 = 6(v) = z*v, for some
vp € Pref(v) with v, = 6(v,) (refer to Figure 9, but keeping in mind that
now vam4+1 = 0(v)). Since v1 = v overlaps with vm,1, we have 2% € Pref(v).
Also the overlap between v,, and vamvam+1 implies that vyz € Suff(v) (note
that v, = 6(v,) in this case). Thus, v = v,2* = 23v,2, which contradicts the
f-primitivity of v since v, is nonempty.

Secondly, we consider the subcase b). If m > 2, then vy = +-- = v,_1 =
and v, = - -+ = V2, = 0(v). This means that v,,—1v, = v8(v) and vamv2m+1 =
0(v)vam+1 overlap, so Theorem 12 implies that ve,41 cannot be either v or
0(v). For m = 1, we have v; = vy = v. If v3 = v, the Fine and Wilf’s theorem
implies that p(u) = p(v). Then, however, the length conditions |[v| < |u| < 2|v|
implies that v is not primitive, a contradiction. Thus, vs = §(v). Since u starts
with v, we can write v = zy = yz, for some z,y,2 € ¥T with z = 6(z) and
2|u| — 2Jv| = 2|z|, as illustrated in Figure 10. Thus, z = pg, z = ¢p, and
y = (pq)'p for some p,q € ¥* and i > 0. Moreover, since 2|u| < 3Jv| < 3|ul,
we have |v| > 2|z|, which means that 2? € Suff(v), i.e., 2% € Pref(6(v)). Hence
z € Suff(u). But, we already had that z € Suff(u), which implies that pg = gp.
Thus, p(p) = p(q) = p(x) = p(y), which contradicts the -primitivity of v. Now

u u U3
e
f T T 1
I v ! v ! 0(1}) |
‘ ‘T Y Iz ‘
l V2!
| 21 |
v

Figure 10: How vavs = vf(v) and v; = v overlap in the subcase b) for m =1

we consider the other subcases. Note that in these subcases m > 2. The subcase
¢) when vy = -+ = Uy, = Upg1 = v and Uy = -+ = Vo, = 0(v) is illustrated
in Figure 11. Then v = yz for some y,z € ¥1 with y = 0(y), z = 0(z), and y €
Suff (v). Since |y| > |z|, Lemma 16 leads to a contradiction with the primitivity
of v. The remaining subcases d) is when v1 = -+ = V1 = v, vy = 6(v),
Umt1 = U, and Upmyo = -+ = vy, = (v). In this subcase, vym_1vm = v8(v)
overlaps with vomV2m4+1 = 0(v)vam+1 with an overlapped part of length at least
|v|. Thus, Theorem 12 implies that v2,, 1 can be neither v nor 8(v).

To conclude, we showed that us # u; and v1 = -+ = Vam41. O

Proposition 18. Letu,v € T such that v is -primitive, uy,uz,u3 € {u,0(u)},
and v, ,Vam € {v,0(v)} for some m > 2. If vy --- vy, € Pref(ujusus) and
(2m — 1)|v| < 2|u| < 2m|v|, then we have one of the following two cases:
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B "Umll = 'U‘ (9(’1}) o ‘ (9(’1}) ‘ Voam+1 ‘
Ly oz ‘ ol oy ‘
}v’ 77777777777777777 4@{
v = UV = U
Figure 11: When v1 = -+ = ¥y, = U1 = 0 and vpyqpo = -+ - = Vo = 0(v)
1. uy # uz and vy = -+ = vop,. In this case, vi = yp and uius = (yp)®>™ ly
for some y,p € X* such that y = 6(y) and p = 0(p), or
2. U1 = U, V1 = -+ = Upy, 0Nd Va1 = + -+ = Vam = O(v1). Moreover, u; =

{r(tr)i(rt)Hir}m=Lp(tr)i(rt)? and vy = r(tr)i(rt)+ir for some r,t € T*
such that r =0(r), t =6(t), 1 >0, and j > 1.

Proof. Just as in the proof of Proposition 17, we can assume without loss of
generality that u; = u and v; = v. Then, we analyze two cases depending on
whether us = u;.

Case 1: Let us look first at the case when uy # uq, i.e., us = 6(u), which
differs only slightly from Case 1 from the proof of Proposition 17. Indeed, it is
enough to consider only the case when uz = 6(u), v1 = -+ = vay,—1 = v and
prove that vs,, = v. Let us suppose for now that vy, = 6(v) and let v = yz
and z = 20(z) for some z,y,z € ¥ with z = §(x) and y = 6(y), as illustrated
in Figure 12.

— o -t
L S e RN ‘ :w)y
A L — v
" o) O(v) 0(2) v

Figure 12: When uz = 6(u), ve,, = 6(v) = zy overlaps with y8(z)v because
0(z)v € Pref(6(u)).

Note that 8(v) = zy = 260(z)y and y € Pref(6(v)). If |y| > |z|, then
Lemma 16 implies that p(z) = p(y), which is a contradiction with §-primitivity
of v. If |z] < |y| < |z|, then z € Pref(y) and 26(z)y € Pref(y6(2)y), as illustrated
in Figure 12. Thus, 26(z)y = y#(z)z, which implies that y,z € {t,0(t)}*, see
[8], contradicting the 6-primitivity of v. If 2[z| < |y| < |2|, then we have
y € Pref(z) and y0(z)y € Pref(z0(z)y), see Figure 13 4). Then, let 6(2) = z1y =
yzz for some 21,20 € L1 with 21 = 6(z1) and 25 = 6(z2) since y € Pref(z).
Then, since zy = yf(z) we have 209> = y?25, and hence p(y) = p(22), which
contradicts the §-primitivity of v as v = yz = yzoy®2. If |y| < 3|2/, then we
have 6(z) = 23y = y2z4 for some 23,24 € T with 23 = 0(23) and 24 = 6(z4),
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see Figure 13 ii). Now, since zy = y6(z), we have z4y® = y®z4. This leads us to
the same contradiction as above because v = yz4y*24.

z 6(2) z 6(2)
e e~
\ an vy 2 A A |
O ——————— P ) O
i) i1)

Figure 13: How va,, = 26(z)y overlaps with y6(z)v when i) £|z| < |y| <|z|, or
it) |y| < 3|z| in Case 1 of Proposition 18

Thus, if u1 # us, then we must have v; = --- = va,,, = v. The representa-
tions of v; and wjus can be obtained using Theorem 12.

Case 2: Let us look next at the case when uy = u; = wu, illustrated in
Figure 14 and let v = zy with « € Suff(v,,) and y € Pref(vpm41). Moreover,
note that |z| < |y| since |z| = m|v| — |u| and (2m — 1)|v| < 2|u|. Now, if we look
at the overlap between vy - - - v,,, and v,,, - - - V2,m_1, then due to Theorem 12, we

get the following subcases: a) v1 = -+ = V1 = v and Uy, = Vg = + -+ =
Vam—1 = 0(W); b) v1 =+ =V, =V, Vppy1 = -+ = Vam—1 = (V).
u u us
t -
U Um+1 V2m—1 Uam
- %Q*Q{ ,,,,,, A/N/_"\l
T Y ‘ T T ! 1
[ 4@1
U1 =0 Um

Figure 14: If uy = u, we can regard that v; ...wv,, overlaps with v, ...vem_1
not depending on the value of ug.

First, let us consider the subcase a). If uz = u, then v,_1v, = v0(v)
overlaps with vy, 109, = 0(v)va,, and thus, due to Theorem 12, vy, cannot
be either v or §(v). Otherwise, uz = 6(u) and note that z = 6(z) and y = 6(y)
since vy, = Vmy1 = 0(v). Then, since the overlapped part between vy, 1 and
V18 , we obtain z € Pref(f(v)). Since #(v) = yz and |z| < |y|, we have
xz € Pref(y), i.e., x € Suff(y). Thus = € Suff(u), that is, z € Pref(6(u)).
Since uz = 6(u) and v, = 0(v) = yz, we can say that v,,_1v, overlaps with
Uam—1V2m, which results in the same conclusion as above. Thus, the subcase a)
is not possible.

For the subcase b), we prove that vs,, = 6(v). Let us start our analysis by
supposing that va,, = v. First, since v, = v ends with z, let v = zwz for some
z,w € XT with |w| = |z|. If uz = 6(u), since va,, = v = zwz, we obtain that
w € Pref(ug), i.e., 8(w) € Suff (u). But this means that w = 6(w), since the
right end of the first u cuts v,, = v = zwz after exactly |zw| characters. Since
the overlap between vs,,_; and v,, is z, we have zz = 2w with z = 6(z) and
w = O(w). Then Lemma 9 implies that z,2z,w € {t,6(t)}" for some t € T+,
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a contradiction with the #-primitivity of v = zwz. If us = u, we immediately
obtain v = zy with y € Pref(v). Since |z| < |y|, the same contradiction derives
from these relations due to Lemma 16.

In conclusion, for this case, i.e., when uy, = u;, we obtain that v; = --- =

Um = v and Vg1 = - -+ = Vg, = 0(v). By applying Theorem 12 to the overlap
between vy . ..v,, and vy, . .. V2,1, We get the decompositions of u and v using
two #-palindromes r and ¢. O

These propositions show that if we suppose v to be #-primitive, then the
values of ui, us, ug, and us determine the values of vy,...,v, and wy,...,wn,
uniquely, modulo a substitution of v by 6(v), or of w by 6(w). Thus, they
decrease significantly the number of cases to be considered. Furthermore, the
value of uz may put an additional useful restriction on v or w as shown in
the following lemma.

Lemma 19. Let u,v € Xt such that v is a 9-primitive word, ui,us,u3 €
{u,0(u)}, and vy, -+ ,v, € {v,0(v)} for somen > 3. Ifvy - - - v, € Pref(ujusus),
uy # ug, up = ug, and (n — 1)jv] < 2Ju| < nfv|, then [v| < 52 |ul.

Proof. Since 6 is an involution, we may assume without loss of generality that
u1 = uw and v; = v. Propositions 17 and 18 imply that v; = -+ = v, = v.
Let now v = zy for some z,y € X7 such that z = 6(z) and y = 6(y), as
illustrated in Figure 15. Since v € Pref(u), we obtain that y € Pref(v). If

Figure 15: Since u begins with v, y is a prefix of v.

|z] < |y|, then Lemma 16 leads to a contradiction with the #-primitivity of v.

Thus |y| < ||, which implies that |y| < 1|v|. This means that |v| < 5 |ul

because |y| = njv| — 2|u]. O

All we did so far in studying the extended Lyndon-Schiitzenberger equa-
tion Uy ...u5 = V1 ...V, Wy ... W, Was to consider either the common prefix of
V1 ...V, and uq . .. us, or the common suffix of w; . ..w,, and u; ...us. Next, we
combine them together and consider the whole equation. The following lemma
proves to be useful for our considerations.

Lemma 20. Let u,v € Xt such that v is a 0-primitive word, ui,us,uz €
{u,0(w)} and v1,--- v, € {v,0(v)} for somen > 3. If vy---v, = ugugz for
some z € Pref(us), u1 = ua, and (n — 1)|v| < 2|u|, then vi = zyz and z = z*
for some z,y € X such that © = 0(z) and yz = O(yx).
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Proof. Just as before, we can assume that u; = us = w and v; = v. Propositions
17 and 18 imply that n must be even, so let n = 2m for some m > 2, and
uw = {r(tr)i(rt)Hr}m=Lr(tr)i(rt)"*’ and v = r(tr)i(rt)"*Ir for some r,t € T*
such that r = 6(r), t = 6(t), @ > 0, and j > 1. By taking z = r(tr)* and
y = (rt)?, we complete the proof. O

Next, we prove that the triple (5,4,m) imposes f-periodicity for any m > 4.

Theorem 21. Let u,v,w € I, uy,us,us,us,us € {u,0(u)}, vi,v2,v3,v4 €
{v,0(v)}, and wy, -+ ,wnm € {w,0(w)} for some m > 4. If these words sat-
iSfy ULU2U3ULUE = V1VU2VU3V4 W1 -+ * Wiy, then u is not 8-primitive and u,v,w €
{t,0(t)}" for somet € TT.

Proof. First note that we can assume that w is @-primitive, since otherwise we
would just increase the numerical parameter m. If u is not #-primitive, that is,
u € {p,0(p)}* for some f-primitive word p € £+ and k > 2, then the equation
can be rewritten as pips - - D5k = V1VU2V304W1 - . . Wy, Where p; € {p,0(p)} for
1 < i < 5k. But then, due to Theorem 13, we obtain that v,w € {p,0(p)}™.
Furthermore, we can assume that also v is @-primitive. Indeed, if it is not,
then v € {q,6(q)}’ for some #-primitive word q and j > 2. Then, the equation
becomes uy ...us = @i ...¢aw1Ws ... W, where ¢; € {q,0(q)} for 1 < i < 4j.
But this implies that u,w € {q,6(q)}" due to Theorem 15. Since u and w are
assumed to be #-primitive, u,w € {q,0(q)} and we have 5|q| < 4j|q| + m|q|,
which contradicts the fact that u,v, and w satisfy the equation u;...us =
q...Q4wiWs ... Wy. Even when v is @-primitive, if m > 7 then the same
argument leads to the same contradiction.

Now we will show that if u, v, and w are @-primitive, then the equation
cannot hold for m < 6. Since 6 is involution, we can assume that u; = u, v1 = v,
and wq = w. Let us start by supposing that u,v, and w satisfy ujusususus =
U1U2U3V4 W1 * + - Wa,. NOw, we have several cases depending on where the border
between v, and w; is located. If it is left to or on the border between us and us,
then Theorem 5 implies that u, w € {t,6(¢)}* for some §-primitive word ¢t € £,
which further implies that also v € {t,6(¢)}*. In fact, u,v,w € {t,0(t)} because
they are #-primitive. Then |u; ...us| = 5[t|, while |[vivevzvaws .. . wm| = (4 +
m)|t| with m > 4, which is a contradiction. The case when the border between v4
and w; is right to or on the border between us and u4 will lead the contradiction
along the same argument.

So let us suppose that |ujug| < |v1vavsvs| < |uiugus|. Note that under this
supposition, |v|, |w| < |u|. If m|w| > 2|u| + |w| — 1, then usugus and wy ... wy,
share a suffix long enough to impose the -periodicity onto v and w due to
Theorem 5. However, as explained before, this leads to a contradiction. This
argument also applies to ujusuz and v;vov3vy. As a result, it is enough to
consider the case when 3|v| < 2|u| < 4Jv] and (m — 1)|w| < 2|u| < m|w|.

There are 16 cases to be considered depending on the values of us, us, u4,
and us. Note that once these values are determined, the values of vy, vs, v3, vy
and wy,- -+ ,w,, are set uniquely due to Propositions 17 and 18. We number
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these cases from 0 to 15 by regarding usususus as the 4-bit number based on the
conversion v — 0 and 6(u) — 1. For example, case 6 is usugusus = ud(u)0(u)u.

First, we consider the case 2, that is, uuuf(u)u = vy ---v4 w1 - - - Wy,. Since
3|v| < 2Ju| < 4Jv|, [v] < 3|u|. Moreover, Lemma 19 implies that |w| < 5 |ul.
Then 5|u| — (4|v] + m|w|) > 0 which contradicts the fact that uw,v, and w
satisfy the given equation. The same arguments work for the cases when either
uiuauz = ub(u)u (ie., cases 8,9, 10, 11), or ugusus = ub(u)u (i.e., cases 2, 10),
or ususus = O(u)ub(u) (i.e., cases 5, 13).

Secondly we consider the case 1, that is, vuuuf(u) = vy - - - v4wy - - - Wy, Let
wuT = vy - - - vg, yub(u) = wy - - - wy, for some z,y € LF such that u = zy. We
immediately obtain now, due to Lemma 20, that x = (z). Since = € Pref(u3),
this means that z € Suff(us), which implies that w,, € Suff(z) or z € Suff(w.,).
In both cases, we obtain that ususus and w,,wiws ... w, share a common
suffix of length at least 2|u| + |w| — 1. Then we employ Theorem 5 to lead a
contradiction. Among the cases left to be investigated, the only one where we
cannot apply this technique is case 0.

Now, case 0 is u1 = us = us = ug = us = u. Applying Propositions 17
and 18, we have that m = 2k for some k > 2, w3 = -+ = W = W, Wgy1 =
- = wog = O(w), v = vy = v, and v3 = vy = 6(v). Note that k € {2,3} since
4 < m < 6. Then, Lemma 20 implies that u = zyzzy = (y'2'z")Fy'z' = 2222,
v = zyz, and (w) = x'y'x’ for some z,y,z',y’ € Tt with z = 0(z), yz = 6(yx),
' =0(2'), and 2'y' = 6(z'y").

When k = 2, i.e., zyxzay = y'z'z'y'z’, we have three subcases depending on
the lengths of zy and y'z'. If |zy| < |y'z’|, then by looking at the two sides of the
equality zyzzy = y'z'z'y'z’, we obtain y'z' = zyz = 0(2)zy and = = 22'6(2)
for some z € XT. Substituting = 22'0(2) into zyz = 6(z)zy we get z = 6(z),
and hence y'z' = zyz = zzy. Thus, y'z', 2y, 2z € {p}* for some primitive word
p. Let z = p* and y'z’ = p? for some 4,5 > 1. Then y'z’ = zzy and = = 22’7
imply that p/ = p?‘a’p'y. Since p is primitive, we obtain that p(z') = p, which
contradicts the #-primitivity of §(w) = z'y'z’. For the case when |zy| > |y'z'| we
can use similar arguments to reach a contradiction. Finally, if |zy| = |y'z’|, then
x = z', which is a contradiction with the §-primitivity of u since v = zzz'z'.

When k = 3, ie., u = zyzzy = (y'z'z')%y'z’, we first note that |zy| >
ly'z'| and |zyz| > |y'z'z'|. If |zy| > |y'z'z’|, then, by the Fine and Wilf’s
theorem, p(zyz) = p(y'z'z"). Since zyz is strictly longer than y'z'z’, this
means that v = zyx is not primitive, which is a contradiction. Otherwise,
ie, [y'z'] < |zy| < |y'2'2'|, let zy = y'z'z for some z € Pref(z’). Since
x' = 0(z'), the equation zyzzy = (y'z'z")%y's" also implies that zy = 6(z)y'z’.
Moreover, since xy = y'z'z = 6(2)y'z’ and 6(z) € Suff(z'), we obtain z = 6(z).
Thus zy,y'z’, 2z € {¢}T for some primitive word ¢ € ¥, which, just as above,
contradicts the §-primitivity of 6(w). O

Next, we prove that the triple (5,3, m) imposes §-periodicity for any m > 3.

Theorem 22. Let w,v,w € X7, ui,us,usz,us,us € {u,0(u)}, vi,ve,v3 €
{v,0(v)}, and w1, - ,wm € {w,8(w)} with m > 3. If these words verify
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the equation uijUusuzUsUs = V1V2V3 Wi - - - Wey, then u is not O-primitive and
u,v,w € {t,0(t)}T for somet € LT.

Proof. As in the proof of Theorem 21, we can assume that w is f-primitive.
Also if u is not f-primitive, then, just as before, Theorem 13 results in u, v, w €
{t,0(t)}* for some t € X*. So let us assume that v is f-primitive. Moreover,
we can assume that v is §-primitive. Indeed, if it is not, then v € {p,8(p)}’ for
some f-primitive word p and j > 2. Then the equation becomes ujusususus =
D1 ..-P3jWr W2 ... Wy, where p; € {p,0(p)} for 1 < i < 3j5. For the case m > 5
and the case m = 4, Theorems 14 and 21 lead us to the contradiction, respec-
tively. If m = 3, we can change the roles of v and w, and reduce it to the
case when v is @-primitive. In the following, we assume that u, v, and w are
f-primitive and prove that the equation cannot hold.

U 6(u) u3 Uq Us
e e e e
r T T T T T 1

1 €T 1
| | I ) )
N o~ ot~ N AT T T T T @
v v v w Wm

Figure 16: ujusususus = v10203w1 - - - Wy, for Theorem 22

Now, since @ is an involution, we can assume that w3 = w, v1 = v, and
w; = w. As in the proof of Theorem 21, in all cases except when the border
between v3 and w; falls inside us, we get a contradiction. Furthermore, using the
same arguments as in the previous proof, we can assume that 2|v| < 2|u| < 3|v|
and (m — 1)|w| < 2|u| < m|w|. Moreover, due to Proposition 17, us = 6(u) and
vy = vy = v3 = v, see Figure 16. Then uf(u)z = v* for some z € ¥T, which
satisfies z = 6(z) due to the same proposition. Since z € Pref(u3), if ug # us,
then z € Suff(uz) which implies that either w,, € Suff(z) or z € Suff(w,,). In
both cases, we obtain that ususus and w,, wiws - - - w,, share a common suffix of
length at least 2|u|+|w|—1. Hence, Theorem 5 implies that u, w € {t,6(¢)}* for
some t € X1 and thus also v € {t,6(¢t)}" which leads to the same contradiction
as above. Otherwise, us = us and we have the following four cases left:

1. wb(u)ub(u)u = vovwy - - - Wy,

2. uf(uw)f(u)ub(u) = vovwy - -+ Wi,

3. ub(w)uuu = vovwy -« - - W,

4. uf(u)0(u)(w)f(u) = vovwy - - - Wiy

Let us start by considering the first equation. Since v is #-primitive, using
Lemma 19, we have |v| < £|u| and |w| < 72— |u|. However, then 5|u| — (3|v| +
mlw|) > 5lu| — Zu| — 522 |u| = %M > 0 because m > 3. Hence,
5|u] > 3|v| + m|w| contradicting our supposition that the words u,v, and w
satisfy the equation uf(u)ud(u)u = vovw, -« - W,

For the second equation, Propositions 17 and 18 imply that w; = wy = --- =
wm = w. Since uf(u) = v?v, for some v, € Pref(v) and uf(u) is f-palindrome,
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we have uf(u) = 6(v,)0(v)®. Note that 6(v,) € Suff(8(v)). Also uf(u) =
ws;w™ ! for some w, € Suff(w). Since m > 3, the Fine and Wilf’s theorem
implies that p(6(v)) = p(w) and thus we obtain again the same contradiction
as above.

Next we consider the third equation. Since u4 = us, Propositions 17 and 18

imply that m = 2k for some &k > 2 and w1 = -+ = w, = w and wpyy = -+ =
war, = O(w). Let wk@(w)F = z120u® for some 21,20 € X1 with |21] = |22] =
k|w| —|u|, as illustrated in Figure 17. Then, 2122 € Suff(u), which due to length
u 6(u) u u U
e T
’ "Y2'y3' i W1'Y2'ys, 21 2y ‘
\ 1 L aml afE) J
\_/\/\_/\_/\/\
v v v wk g(w)k

Figure 17: The suffix of us can be written in two ways as y1y2ys and z1z».

conditions means that z; € Suff(w*). Thus, §(z;) € Pref(§(w)*) which implies
immediately that zo = 6(z1). Similarly, we can let uf(u)u = v3y,y2y3 for some
y1,y2,y3 € 1 with [y1]| = [y2| = |ys| = [u| — |v|. Then y1y2ys = 216(21), which
implies y3 = 6(y1) and y, = #(y2). Note that since [w*0(w)*| > 4|w| and (2k —
1)|w| < 2|u| < 2k|w| we obtain 3|y1y2ys| = 3(2k|w| — 2|u|) < (2k — 1)|w| < 2|u|
which implies |y1y2ys| < 3|u|. This further implies that |z| = |u| — |y1y2ys| >
ly1|. If we look at the second v, since y3 € Suff(u), using length arguments, we
obtain that y3 € Pref(v), and hence ys € Pref(u). Since |ys| < |z|, this means
that y3 € Pref(z) and hence 8(ys) € Suff(z), which further implies 6(y3) €
Suff(v). Thus y2 = 6(y3) because yo € Suff(v), which results in y; = y2 = y3
and, moreover, they are all #-palindromes. Hence y1y2 = 6(y2)0(y1) = 0(y1y2),
which is a prefix of (v). This means that uf(u)u and v3@(v) share a prefix of
length at least 2|u| + |v| — 1. Consequently pp(u) = pg(v) which leads to the
same contradiction as before.

u f(u) f(u) b(w) f(u)

Y2y’ I Y1'Y2'Y3!

Figure 18: The suffix of uz can be written in two ways as y1y2ys and 216(z1).

Lastly, we consider the fourth equation, illustrated in Figure 18. Just as in
the case of the third equation, y3 = 6(y1) and y» = 6(y2). Moreover, using length
arguments, we have v = yoy3 for some z € £+ and hence uf(u) = (y2y37)2y2ys.
This implies that 6(y3) = y2 so that y; = y2 = y3. The rest is as same as for
the third equation.

In conclusion, if u is #-primitive, then, using length arguments, we always
reach a contradiction. On the other hand, if w is not #-primitive, then we proved
that there exists a word ¢t € T such that u,v,w € {t,0(t)}*. O
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